

Active inrush current limiter based on SCRs for 3.6kW bridgeless totem pole PFC

Agenda

• ST AC-DC inrush current limiter solutions

- PFC totem pole topology using SiC MOSFETs and thyristors
- Evaluation board performance
- Takeaways

ST AC-DC inrush current limiter solutions

Programmable soft power up control
Controlled multiple peak current limitation
Zero-current Switch

COMPA

- No Contact Bounce: no spark, no EMI
- Faster line-drop recovery
- Increase switching life expectancy

Low profile design, smaller height thanks to D²PAK package

Agenda

- ST AC-DC inrush current limiter solutions
- PFC totem pole topology using SiC MOSFETs and thyristors
- Evaluation board performance
- Takeaways

PFC totem pole topology (1/5) Traditional PFC totem pole

- A conventional PFC circuit:
 - Consists of a full bridge rectifier and a boost pre-regulator
 - A large portion of system losses are in the diode bridge

- In a traditional totem pole PFC:
 - The diode losses are eliminated
 - Low frequency switches are diodes or MOSFETs
 - Needs an Inrush current limiter (NTC + relays)

PFC totem pole topology (2/5) Operation

life.auamente

- D1 /D2 diodes (can be replaced by MOSFETs) works at AC line frequency Needs an Inrush current limiter (NTC and Relay)

SCRs solution

PFC totem pole topology (3/5) SCRs phase control

- Control the inrush-current to charge a DC bus capacitor
- Disconnect the DC bus capacitor from the AC mains when it does not have to operate

PFC totem pole topology (4/5) MOSFET vs SCR comparison

As low frequency switching, only the conduction losses are considered

life.gugmented

Note: losses are calculated for single half-wave conduction (so for each device). Multiply by 2 to calculated the total losses (for the 2 SCR or the 2 MOS).

8

PFC totem pole topology (5/5) MOSFET vs SCR comparison

- SCR have the same efficiency as MOSFET but with a silicon area more optimized
- With the traditional NTC / Relay solution, the contact resistance relay is needed to be into account
- SCRs surge current capabilities makes the SCR the ideal candidate for bridge applications where the devices can be submitted to voltage surges

Agenda

- ST AC-DC inrush current limiter solutions
- PFC totem pole topology using SiC MOSFETs and Thyristors
- Evaluation board performance
- Takeaways

Evaluation board performance Design content

	Reference	Name	Description
	STEVAL-DPSTPFC0	AC - DC power board	Bridgeless Totem Pole boost with auxiliary supply
	STEVAL-DPS334M1	PFC control board	32-bit MCU control board
	STEVAL-DPSADP01	Adapter Board	Interface for MCU debugging and USART communication
			11

life.augmented

Evaluation board performance Firmware overview

• Control loop:

- Average current-mode control method I
- Continuous and discontinuous conduction mode
- Outer voltage loop performed at 72 kHz
- Outer voltage loop performed at 2 times of AC line frequency
- DFF is used to pre-calculate a duty ratio and to improve the transient response
- Digital average current mode control in CCM and DCM including:
 - · Bus voltage and AC line currents sampling
 - Voltage error calculation
 - Voltage PI regulation
 - Reference current calculation
 - Current error calculation
 - Duty cycle feed-forward generation
 - Final duty cycle computation

Evaluation board performance PFC totem pole start-up

To ensure a smooth PFC start-up a soft start routines has been implemented on the MCU firmware:

- 1) Inrush current limiter: SCRs are controlled with a progressive phase control and the output capacitor can be smoothly up to the AC line peak voltage.
- 2) **PFC soft start**: The output voltage reference is controlled from AC line peak voltage to 400 Vdc with a smoothly voltage ramp.

Evaluation board performance PFC efficiency / THD measurement

VAC = 230 VRMS @ 50 Hz

Evaluation board performance SiC MOSFET control

• SiC MOSFETs are operating in synchronous conduction mode to improve efficiency

Current spike is generated at each AC line zero cross

- Duty ratio of switch changes abruptly from zero to almost 100% after each AC line zero cross
- High voltage is applied to the inductor (HVDC). A high positive current spike is generated
- Same phenomenon with diode or MOSFET

Evaluation board performance SiC MOSFET control

- SiC MOSFETs are controlled with a smart Duty Cycle control at each AC line zero cross
 - To reduce peak current through boost inductor at the AC line zero crossing
 - To improve common mode noise

Evaluation board performance Common mode noise measurement (load = $800 \text{ W} / 230 \text{ V}_{RMS} / 50 \text{ Hz}$)

Without smart Duty cycle control

With smart Duty cycle control

Evaluation board performance Drop AC line voltage

With SCRs, AC line voltage interrupt is managed more effectively than NTC + relays solution

Evaluation board performance Main figures

- Input AC voltage: 85VAC up to 264VAC
- Input AC frequency: 45Hz up to 65Hz
- DC output voltage: 400VDC
- Switching frequency: 72 kHz
- Maximum input curent: 16 A RMS (POUT = 3.6KW)
- A high efficiency: > 97,5%
- A low THD distortion lower than 5 % of maximum
- Compliant to :
 - EN 55022 and IEC 61000-4-11 and IEC 61000-3-3
 - IEC 61000-4-5 surge: 4kV
 - IEC 61000-4-4 EFTY burst : criteria A @ 4kV
- Cooling: forced air cooling with active fan
- Design for operation with DC/DC converter
- Peak inrush current tuning
- Remove two bulky relays and an NTC resistor thanks to SCRs progressive start-up

Agenda

- ST AC-DC inrush current limiter solutions
- PFC totem pole topology using SiC MOSFETs and thyristors
- Evaluation board performance
- Takeaways

Takeaways

- This presentation described a 3,6kW bridgeless totem pole PFC evaluation board for telecom and industrial applications with an digital Inrush current limiter using SiC MOSFETs and Thyristors.
- The Evaluation board design includes
 - A power board bridgeless totem pole boost with an inrush limiter circuit, SiC MOSFET and SCRs switch drivers and an auxiliary power supply
 - A control board with its MCU, a PFC/ICL control firmware
 - An adapter board for software debug

DC/DC or motor inverter can be connected to this evaluation board

- Evaluate a full ST solution
 - SCRs: To control the inrush-current to charge a DC bus capacitor and to fulfill with the IEC 61000-3-3 standard
 - SiC MOSFETs: To reduce passive components size and to provide a PFC with a very high efficiency thanks to low reverse recovery diode body
 - STGAP2S driver: Dedicated and optimized to control SiC MOSFETs
 - STM32 microcontroller: Embedded the PFC control algorithm

Takeaways

- Check the stand-by losses
 - Reduce drastically the stand-by losses of the traditional NTC/PTC Inrush-current limitation
 - Disconnect the DC bus capacitor from the AC mains when it does not have to operate
 - Without requiring a relay to be added to open the circuit during stand-by
- Check EMC
 - Immunity to fast transient and surge voltages
 - Common mode noise
- This reference design offering:
 - A high efficiency: > 97,5%
 - A low THD distortion lower than 5 % of maximum load
 - A high switching lifetime with reduced EMI emissions
 - A robust circuit that meets EMC standards up to 4 kV
- SCR allows achieving a smart inrush current limitation at power up or line drop recovery compare to the traditional NTC and relays solution

Thank you

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

